The Quality Assurance Toolkit
The Michelson Prize & Grants Research Quality Assurance Toolkit (QA Toolkit) is provided here to assist applicants in generating research data that are accurate, reproducible, and auditable. It is designed to facilitate best practices in the management of research personnel and equipment, validation of methods, standard operating procedures (SOPs), and maintenance of data and documents.
All documents in the toolkit may be downloaded, altered, and used free of charge by visitors to this website. The Quality Research Practices Self Assessment Checklist (Self Assessment Checklist) serves as a table of contents of downloadable documents. The toolkit includes sample forms, SOPs, and tips on creating forms and SOPs.
We recommend, but do not require, new Michelson Grant applicants to utilize these tools because they provide investigators with mechanisms for demonstrating process transparency, accountability, and a straightforward method for reconstructing data if required. Investigators submitting for second and renewal grants, or who are completing Data Package-1 for a Michelson Prize application, must at a minimum meet the standards marked as required on the Self Assessment Checklist. Found Animals will fund clinical trials to test products from one or more Prize applications, and therefore seeks applications that contain accurate, reproducible, and auditable research findings.
The QA Toolkit includes the following five sections of usable forms. Click to download each form individually or download the entire toolkit at the bottom of the page.
Section 1 - Personnel Records
Section 2 - Equipment Records
Section 3 - Methods Validation Records
Section 4 - Standard Operating Procedures
Section 5 - Research Laboratory Data and Documents Management
The Michelson Prize & Grants Quality Assurance Toolkit was created through collaboration with Dr. Rebecca Davies, Emeritus Associate Professor at the University of Minnesota College of Veterinary Medicine [rdavies@umn.edu; 651-295-6216]. The toolkit does not provide a complete quality management system, and its use will not guarantee that quality requirements associated with specific scientific standards or the Michelson Prize & Grants program are met. Its tools are examples only and should not be considered preferred to other institutional forms or to procedures in use by investigators that manage QA data.
Quality practices for personnel management include maintenance of employee credentials and employee training records. The role of the employee in the research project should be easily ascertainable both for auditors and when trouble shooting errors or non-conforming results.
Quality practices for equipment management include maintenance of inventory logs of critical equipment, equipment calibration information, and the tracking of preventive and non-routine equipment maintenance. All users of a critical, designated piece of equipment should operate that equipment using a Standard Operating Procedure so as to ensure uniform results. Personnel who are responsible for equipment maintenance should be designated, and provided logs for recording their work.
Research investigators should be able to answer the following questions about the methods used to generate their data:
- How do you know that this method works?
- How do you know when this method is not working?
- Is there an effect of sample handling or environmental conditions (like laboratory temperature) on measured outcome?
- Does anything interfere with the accurate measurement or production of the result? How do you control for that interference?
- Are your results repeatable (multiple measures in the same lab) and reproducible (in a different lab)?
- If you make minor changes in the procedure, or if different people perform the procedure, are the results affected?
Accuracy and repeatability of research findings rely on analytical methods and operation of critical equipment that are performed the same way every time they are performed. Reliability is enhanced if Standard Operating Procedures are developed, if users are trained in the procedures documented, and if users follow the procedures uniformly every time an analytical method is performed or critical piece of equipment is used.
Good records accurately document what you did, when you did it, how you did it, and what materials and instruments you used. They document the results you obtained, how you analyzed the results, how you discovered errors or nonconforming results and what you did about them. They include entries from both successful and unsuccessful activities. Good records are tools that support accurate repetition of the project by yourself and others.
Good records are legible, have sequentially numbered pages, are dated, signed/initialed, are recorded in ink or “non-erasable” form, and are auditable. Errors are not erased, but rather lined through, corrected, and the correction is initialed/dated. Good records are well organized, accessible, backed up, and appropriately archived.
Complete records provide details related to identifying and handling outliers and rejected data within data sets. When corrections to research data result in significant changes in research plans or directions, details are provided that clarify the impact of the changes on the project. Documents managed in good quality research practices include the forms we have provided in the 5 sections.
This section includes templates for:
- Chemical/reagent acquisition, storage, expiration and disposition records
- Facility records (if critical i.e. temperature monitoring, water monitoring, pest control)
- Animal acquisition, care, monitoring, sampling and disposition records
- Sample acquisition, tracking, archiving and disposition records
- Manual/computer generated data recording records
- Laboratory notebook [bound book or defined equivalent with numbered pages or electronic notebook, to keep all notes (primary, random, scrap notes)]
- Summary spreadsheet data records
- Nonconforming work procedures and records